A Note on a Result by Hamada on Minihypers

Ivan Landjev

Institute of Mathematics and Informatics Bulgarian Academy of Sciences

Assia Rousseva

Faculty of Mathematics and Informatics
Sofia University

Linear Codes and the Griesmer Bound

 $C: \ \mathsf{linear}\ [n,k,d]$ -code over \mathbb{F}_q

The Griesmer bound:

$$n \ge \sum_{i=0}^{k-1} \lceil \frac{d}{q^i} \rceil \stackrel{def}{=} g_q(k, d)$$

Griesmer code: $[g_q(k,d),k,d]_q$.

Multisets and Minihypers in PG(t,q)

$$PG(t,q) = (\mathcal{P}, \mathcal{L}, I)$$

$$v_{t+1} = \frac{q^{t+1} - 1}{q - 1}$$

A multiset in $\mathrm{PG}(t,q)$: $\mathfrak{K}\colon \mathcal{P}\to \mathbb{N}_0$.

The support of \mathfrak{K} : Supp $\mathfrak{K} = \{ P \in \mathcal{P} \mid \mathfrak{K}(P) > 0 \}$.

A projective multiset in PG(t,q): $Im \mathfrak{K} = \{0,1\}$.

A characteristic multiset of a set $\mathcal{Q} \subseteq \mathcal{P}$:

$$\chi_{\mathcal{Q}} = \left\{ \begin{array}{ll} 1 & P \in \mathcal{Q}, \\ 0 & Q \notin \mathcal{Q}. \end{array} \right.$$

Multisets and Minihypers in PG(t,q) (cont.)

Definition. A multiset \mathfrak{F} in $\mathrm{PG}(t,q)$, $t\geq 2$, is called an (f,m;t,q)-minihyper or (f,m)-minihyper if

- (a) $\mathfrak{F}(\mathcal{P}) = f$;
- (b) $\mathfrak{F}(H) \geq m$ for any hyperplane H;
- (c) there exists a hyperplane H_0 with $\mathfrak{F}(H_0) = m$.

An (f,m;t,q)-minihyper $\mathfrak F$ is said to be *reducible* if there exists an (f',m;t,q)-minihyper $\mathfrak F'$ with f'< f $\mathfrak F'(P)\leq \mathfrak F(P)$ for every $P\in \mathcal P$.

Minihypers and Linear Codes

Let C be an $[n,k,d]_q$ -code.

If $(s-1)q^{k-1} \leq d < sq^{k-1}$ then d can be written (uniquely) as:

$$d = sq^{k-1} - \sum_{i=1}^{h} q^{\lambda_i},$$

where

- (a) $0 \le \lambda_1 \le \ldots \le \lambda_h < k-1$;
- (b) at most q-1 of the values λ_i are equal to a given value.

The Griesmer bound:

$$n \ge g_q(k,d) = sv_k - \sum_{i=1}^h v_{\lambda_i+1}$$

Minihypers and Linear Codes(cont.)

Theorem. (Hamada)

If $d=sq^{k-1}-\sum_{i=1}^h q^{\lambda_i}$ there exits a one-to-one correspondence between the set of nonequivalent $[n,k,d]_q$ codes meeting the Griesmer bound and the set of all projectively distinct minihypers with parameters

$$(\sum_{i=1}^{h} v_{\lambda_i+1}, \sum_{i=1}^{h} v_{\lambda_i}; k-1, q).$$

Characterization Results on Minihypers

Theorem. (Hamada, Helleseth, Maekawa)

A non-weighted minihyper with parameters

$$(\sum_{i=0}^{t-1} \epsilon_i v_{i+1}, \sum_{i=0}^{t-1} \epsilon_i v_i; t, q),$$

where $\sum_{i=0}^{t-1} \epsilon_i < \sqrt{q}+1$, is a union of ϵ_{t-1} hyperplanes, ϵ_{t-2} (t-2)-dimensional spaces, \ldots, ϵ_1 lines, and ϵ_0 points, which all are pairwise disjoint.

Characterization Results on Minihypers (cont.)

Theorem. (De Beule, Metsch, Storme)

A $(\sum_{i=0}^{t-1} \epsilon_i v_{i+1}, \sum_{i=0}^{t-1} \epsilon_i v_i; t, q)$ -minihyper, where $\sum_{i=0}^{t-1} \epsilon_i \leq \delta_0$, with δ_0 equal to one of the values in the table below, is a union of ϵ_{t-1} hyperplanes, ϵ_{t-2} (t-2)-dimensional spaces, ..., ϵ_1 lines, and ϵ_0 points, which all are pairwise disjoint. (In the table $q=p^s$, p prime, $s \geq 1$.)

p	s	δ_0
p	even	$\leq \sqrt{q}$
p	s = 1	$\leq (p+1)/2$
p	3	$\leq p^2$
2	$6m+1, m \ge 1$	$\leq 2^{4m+1} - 2^{4m} - 2^{2m+1}/2$
> 2	$6m+1, m \ge 1$	$\leq p^{4m+1} - p^{4m} - p^{2m+1}/2 + 1/2$
2	$6m+3, m \ge 1$	$<2^{4m+5/2}-2^{4m+1}-2^{2m+1}+1$
> 2	$6m+3, m \ge 1$	$\leq p^{4m+2} - p^{2m+2} + 2$
≥ 5	$6m + 5, m \ge 0$	$ < p^{4m+7/2} - p^{4m+3} - p^{2m+2}/2 + 1 $

Table 1: upper bounds on δ_0

Characterization Results on Minihypers (cont.)

Theorem. (Hamada) A non-weighted

$$\left(\sum_{i=1}^{h} v_{\lambda_i+1}, \sum_{i=1}^{h} v_{\lambda_i}; t, q\right)$$

minihyper, with $t > \lambda_1 > \lambda_2 > \cdots > \lambda_h \geq 0$, is the union of a λ_1 -dimensional space, λ_2 -dimensional space, ..., λ_h -dimensional space, which all are pairwise disjoint.

Characterization Results on Minihypers (cont.)

Theorem. (Landjev, Storme)

Let \mathfrak{F} be a $(\sum_{i=1}^h v_{\lambda_i+1}, \sum_{i=1}^h v_{\lambda_i}; t, q)$ -minihyper, with $t \geq 2$, $q \geq 3$, and

$$t > \lambda_1 > \lambda_2 > \dots > \lambda_h \ge 0.$$

Then

$$\mathfrak{F} = \sum_{i=1}^{h} \chi_{\pi_i},$$

where π_i is a λ_i -dimensional subspace of $\operatorname{PG}(t,q)$ and $i=1,\ldots,h$.

The Theorem

Theorem. Let $t \geq 2$ be an integer and let $q \geq 3$ be a prime power. Let $\lambda_1, \ldots, \lambda_h$ be a sequence of non-negative integers such that

(1)
$$t > \lambda_1 > \lambda_2 \geq \lambda_3 \geq \ldots \geq \lambda_h \geq 0$$
, and

(2) equalities in (1) occur in at most r(q) - 1 places, where q+1+r(q) is the size of the smallest nontrivial blocking set in PG(2,q).

Then every minihyper \mathfrak{F} in $\mathrm{PG}(t,q)$ with parameters $(\sum_{i=1}^h v_{\lambda_i+1}, \sum_{i=1}^h v_{\lambda_i})$ can be represented as

$$\mathfrak{F} = \sum_{i=1}^{h} \chi_{\pi_i},$$

where π_i is a λ_i -dimensional subspace of $\operatorname{PG}(t,q)$ and $i=1,\ldots,h$.